Matemática discreta Ejemplos

Hallar las raíces/ceros usando la prueba de raíces racionales 4x^3-2x^2+48x
Paso 1
Si una función polinomial tiene coeficientes enteros, entonces todo cero racional tendrá la forma , donde es un factor de la constante y es un factor del coeficiente principal.
Paso 2
Obtén todas las combinaciones de . Estas son las posibles raíces de la función polinomial.
Paso 3
Sustituye las posibles raíces una por una en el polinomio para obtener las raíces reales. Simplifica para comprobar si el valor es , lo que significa que es una raíz.
Paso 4
Simplifica la expresión. En este caso, la expresión es igual a , por lo que es una raíz del polinomio.
Toca para ver más pasos...
Paso 4.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 4.1.2
Multiplica por .
Paso 4.1.3
Elevar a cualquier potencia positiva da como resultado .
Paso 4.1.4
Multiplica por .
Paso 4.1.5
Multiplica por .
Paso 4.2
Simplifica mediante la adición de números.
Toca para ver más pasos...
Paso 4.2.1
Suma y .
Paso 4.2.2
Suma y .
Paso 5
Como es una raíz conocida, divide el polinomio por para obtener el polinomio del cociente. Este polinomio luego se puede usar para obtener las raíces restantes.
Paso 6
Luego, obtén las raíces del polinomio restante. El orden del polinomio se ha reducido por .
Toca para ver más pasos...
Paso 6.1
Coloca los números que representan el divisor y el dividendo en una configuración tipo división.
  
Paso 6.2
El primer número en el dividendo se pone en la primera posición del área del resultado (debajo de la recta horizontal).
  
Paso 6.3
Multiplica la entrada más reciente en el resultado por el divisor y coloca el resultado de debajo del siguiente término en el dividendo .
  
Paso 6.4
Suma el producto de la multiplicación y el número del dividendo y coloca el resultado en la siguiente posición en la línea del resultado.
  
Paso 6.5
Multiplica la entrada más reciente en el resultado por el divisor y coloca el resultado de debajo del siguiente término en el dividendo .
  
Paso 6.6
Suma el producto de la multiplicación y el número del dividendo y coloca el resultado en la siguiente posición en la línea del resultado.
  
Paso 6.7
Multiplica la entrada más reciente en el resultado por el divisor y coloca el resultado de debajo del siguiente término en el dividendo .
 
Paso 6.8
Suma el producto de la multiplicación y el número del dividendo y coloca el resultado en la siguiente posición en la línea del resultado.
 
Paso 6.9
Todos los números excepto el último se convierten en coeficientes del polinomio del cociente. El último valor de la línea del resultado es el resto.
Paso 6.10
Simplifica el polinomio del cociente.
Paso 7
Factoriza de .
Toca para ver más pasos...
Paso 7.1
Factoriza de .
Paso 7.2
Factoriza de .
Paso 7.3
Factoriza de .
Paso 7.4
Factoriza de .
Paso 7.5
Factoriza de .
Paso 8
Factoriza de .
Toca para ver más pasos...
Paso 8.1
Factoriza de .
Paso 8.2
Factoriza de .
Paso 8.3
Factoriza de .
Paso 8.4
Factoriza de .
Paso 8.5
Factoriza de .
Paso 9
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 10
Establece igual a .
Paso 11
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 11.1
Establece igual a .
Paso 11.2
Resuelve en .
Toca para ver más pasos...
Paso 11.2.1
Usa la fórmula cuadrática para obtener las soluciones.
Paso 11.2.2
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 11.2.3
Simplifica.
Toca para ver más pasos...
Paso 11.2.3.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 11.2.3.1.1
Eleva a la potencia de .
Paso 11.2.3.1.2
Multiplica .
Toca para ver más pasos...
Paso 11.2.3.1.2.1
Multiplica por .
Paso 11.2.3.1.2.2
Multiplica por .
Paso 11.2.3.1.3
Resta de .
Paso 11.2.3.1.4
Reescribe como .
Paso 11.2.3.1.5
Reescribe como .
Paso 11.2.3.1.6
Reescribe como .
Paso 11.2.3.2
Multiplica por .
Paso 11.2.4
Simplifica la expresión para obtener el valor de la parte de .
Toca para ver más pasos...
Paso 11.2.4.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 11.2.4.1.1
Eleva a la potencia de .
Paso 11.2.4.1.2
Multiplica .
Toca para ver más pasos...
Paso 11.2.4.1.2.1
Multiplica por .
Paso 11.2.4.1.2.2
Multiplica por .
Paso 11.2.4.1.3
Resta de .
Paso 11.2.4.1.4
Reescribe como .
Paso 11.2.4.1.5
Reescribe como .
Paso 11.2.4.1.6
Reescribe como .
Paso 11.2.4.2
Multiplica por .
Paso 11.2.4.3
Cambia a .
Paso 11.2.5
Simplifica la expresión para obtener el valor de la parte de .
Toca para ver más pasos...
Paso 11.2.5.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 11.2.5.1.1
Eleva a la potencia de .
Paso 11.2.5.1.2
Multiplica .
Toca para ver más pasos...
Paso 11.2.5.1.2.1
Multiplica por .
Paso 11.2.5.1.2.2
Multiplica por .
Paso 11.2.5.1.3
Resta de .
Paso 11.2.5.1.4
Reescribe como .
Paso 11.2.5.1.5
Reescribe como .
Paso 11.2.5.1.6
Reescribe como .
Paso 11.2.5.2
Multiplica por .
Paso 11.2.5.3
Cambia a .
Paso 11.2.6
La respuesta final es la combinación de ambas soluciones.
Paso 12
La solución final comprende todos los valores que hacen verdadera.
Paso 13